268 research outputs found

    X-TCP: A Cross Layer Approach for TCP Uplink Flows in mmWave Networks

    Full text link
    Millimeter wave frequencies will likely be part of the fifth generation of mobile networks and of the 3GPP New Radio (NR) standard. MmWave communication indeed provides a very large bandwidth, thus an increased cell throughput, but how to exploit these resources at the higher layers is still an open research question. A very relevant issue is the high variability of the channel, caused by the blockage from obstacles and the human body. This affects the design of congestion control mechanisms at the transport layer, and state-of-the-art TCP schemes such as TCP CUBIC present suboptimal performance. In this paper, we present a cross layer approach for uplink flows that adjusts the congestion window of TCP at the mobile equipment side using an estimation of the available data rate at the mmWave physical layer, based on the actual resource allocation and on the Signal to Interference plus Noise Ratio. We show that this approach reduces the latency, avoiding to fill the buffers in the cellular stack, and has a quicker recovery time after RTO events than several other TCP congestion control algorithms.Comment: 6 pages, 5 figures, accepted for presentation at the 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET

    A QUIC Implementation for ns-3

    Full text link
    Quick UDP Internet Connections (QUIC) is a recently proposed transport protocol, currently being standardized by the Internet Engineering Task Force (IETF). It aims at overcoming some of the shortcomings of TCP, while maintaining the logic related to flow and congestion control, retransmissions and acknowledgments. It supports multiplexing of multiple application layer streams in the same connection, a more refined selective acknowledgment scheme, and low-latency connection establishment. It also integrates cryptographic functionalities in the protocol design. Moreover, QUIC is deployed at the application layer, and encapsulates its packets in UDP datagrams. Given the widespread interest in the new QUIC features, we believe that it is important to provide to the networking community an implementation in a controllable and isolated environment, i.e., a network simulator such as ns-3, in which it is possible to test QUIC's performance and understand design choices and possible limitations. Therefore, in this paper we present a native implementation of QUIC for ns-3, describing the features we implemented, the main assumptions and differences with respect to the QUIC Internet Drafts, and a set of examples.Comment: 8 pages, 4 figures. Please cite it as A. De Biasio, F. Chiariotti, M. Polese, A. Zanella, M. Zorzi, "A QUIC Implementation for ns-3", Proceedings of the Workshop on ns-3 (WNS3 '19), Firenze, Italy, 201

    Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios

    Full text link
    Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications

    A dynamic approach to rebalancing bike-sharing systems

    Get PDF
    Bike-sharing services are flourishing in Smart Cities worldwide. They provide a low-cost and environment-friendly transportation alternative and help reduce traffic congestion. However, these new services are still under development, and several challenges need to be solved. A major problem is the management of rebalancing trucks in order to ensure that bikes and stalls in the docking stations are always available when needed, despite the fluctuations in the service demand. In this work, we propose a dynamic rebalancing strategy that exploits historical data to predict the network conditions and promptly act in case of necessity. We use Birth-Death Processes to model the stations' occupancy and decide when to redistribute bikes, and graph theory to select the rebalancing path and the stations involved. We validate the proposed framework on the data provided by New York City's bike-sharing system. The numerical simulations show that a dynamic strategy able to adapt to the fluctuating nature of the network outperforms rebalancing schemes based on a static schedule

    Context-Aware Handover Policies in HetNets

    Get PDF
    Next generation cellular systems are expected to entail a wide variety of wireless coverage zones, with cells of different sizes and capacities that can overlap in space and share the transmission resources. In this scenario, which is referred to as Heterogeneous Networks (HetNets), a fundamental challenge is the management of the handover process between macro, femto and pico cells. To limit the number of handovers and the signaling between the cells, it will hence be crucial to manage the user's mobility considering the context parameters, such as cells size, traffic loads, and user velocity. In this paper, we propose a theoretical model to characterize the performance of a mobile user in a HetNet scenario as a function of the user's mobility, the power profile of the neighboring cells, the handover parameters, and the traffic load of the different cells. We propose a Markov-based framework to model the handover process for the mobile user, and derive an optimal context-dependent handover criterion. The mathematical model is validated by means of simulations, comparing the performance of our strategy with conventional handover optimization techniques in different scenarios. Finally, we show the impact of the handover regulation on the users performance and how it is possible to improve the users capacity exploiting context information

    Joint Optimization of Energy Efficiency and Data Compression in TDMA-Based Medium Access Control for the IoT - Extended Version

    Full text link
    Energy efficiency is a key requirement for the Internet of Things, as many sensors are expected to be completely stand-alone and able to run for years without battery replacement. Data compression aims at saving some energy by reducing the volume of data sent over the network, but also affects the quality of the received information. In this work, we formulate an optimization problem to jointly design the source coding and transmission strategies for time-varying channels and sources, with the twofold goal of extending the network lifetime and granting low distortion levels. We propose a scalable offline optimal policy that allocates both energy and transmission parameters (i.e., times and powers) in a network with a dynamic Time Division Multiple Access (TDMA)-based access scheme.Comment: 8 pages, 4 figures, revised and extended version of a paper that was accepted for presentation at IEEE Int. Workshop on Low-Layer Implementation and Protocol Design for IoT Applications (IoT-LINK), GLOBECOM 201

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use
    corecore